Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Model-Based Minimum Bayes Risk Decoding for Text Generation (2311.05263v2)

Published 9 Nov 2023 in cs.AI and cs.CL

Abstract: Minimum Bayes Risk (MBR) decoding has been shown to be a powerful alternative to beam search decoding in a variety of text generation tasks. MBR decoding selects a hypothesis from a pool of hypotheses that has the least expected risk under a probability model according to a given utility function. Since it is impractical to compute the expected risk exactly over all possible hypotheses, two approximations are commonly used in MBR. First, it integrates over a sampled set of hypotheses rather than over all possible hypotheses. Second, it estimates the probability of each hypothesis using a Monte Carlo estimator. While the first approximation is necessary to make it computationally feasible, the second is not essential since we typically have access to the model probability at inference time. We propose Model-Based MBR (MBMBR), a variant of MBR that uses the model probability itself as the estimate of the probability distribution instead of the Monte Carlo estimate. We show analytically and empirically that the model-based estimate is more promising than the Monte Carlo estimate in text generation tasks. Our experiments show that MBMBR outperforms MBR in several text generation tasks, both with encoder-decoder models and with LLMs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com