Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TransReg: Cross-transformer as auto-registration module for multi-view mammogram mass detection (2311.05192v1)

Published 9 Nov 2023 in cs.CV

Abstract: Screening mammography is the most widely used method for early breast cancer detection, significantly reducing mortality rates. The integration of information from multi-view mammograms enhances radiologists' confidence and diminishes false-positive rates since they can examine on dual-view of the same breast to cross-reference the existence and location of the lesion. Inspired by this, we present TransReg, a Computer-Aided Detection (CAD) system designed to exploit the relationship between craniocaudal (CC), and mediolateral oblique (MLO) views. The system includes cross-transformer to model the relationship between the region of interest (RoIs) extracted by siamese Faster RCNN network for mass detection problems. Our work is the first time cross-transformer has been integrated into an object detection framework to model the relation between ipsilateral views. Our experimental evaluation on DDSM and VinDr-Mammo datasets shows that our TransReg, equipped with SwinT as a feature extractor achieves state-of-the-art performance. Specifically, at the false positive rate per image at 0.5, TransReg using SwinT gets a recall at 83.3% for DDSM dataset and 79.7% for VinDr-Mammo dataset. Furthermore, we conduct a comprehensive analysis to demonstrate that cross-transformer can function as an auto-registration module, aligning the masses in dual-view and utilizing this information to inform final predictions. It is a replication diagnostic workflow of expert radiologists

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.