Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Meta-learning of semi-supervised learning from tasks with heterogeneous attribute spaces (2311.05088v1)

Published 9 Nov 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We propose a meta-learning method for semi-supervised learning that learns from multiple tasks with heterogeneous attribute spaces. The existing semi-supervised meta-learning methods assume that all tasks share the same attribute space, which prevents us from learning with a wide variety of tasks. With the proposed method, the expected test performance on tasks with a small amount of labeled data is improved with unlabeled data as well as data in various tasks, where the attribute spaces are different among tasks. The proposed method embeds labeled and unlabeled data simultaneously in a task-specific space using a neural network, and the unlabeled data's labels are estimated by adapting classification or regression models in the embedding space. For the neural network, we develop variable-feature self-attention layers, which enable us to find embeddings of data with different attribute spaces with a single neural network by considering interactions among examples, attributes, and labels. Our experiments on classification and regression datasets with heterogeneous attribute spaces demonstrate that our proposed method outperforms the existing meta-learning and semi-supervised learning methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.