Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MathNAS: If Blocks Have a Role in Mathematical Architecture Design (2311.04943v2)

Published 8 Nov 2023 in cs.LG and cs.AI

Abstract: Neural Architecture Search (NAS) has emerged as a favoured method for unearthing effective neural architectures. Recent development of large models has intensified the demand for faster search speeds and more accurate search results. However, designing large models by NAS is challenging due to the dramatical increase of search space and the associated huge performance evaluation cost. Consider a typical modular search space widely used in NAS, in which a neural architecture consists of $m$ block nodes and a block node has $n$ alternative blocks. Facing the space containing $nm$ candidate networks, existing NAS methods attempt to find the best one by searching and evaluating candidate networks directly.Different from the general strategy that takes architecture search as a whole problem, we propose a novel divide-and-conquer strategy by making use of the modular nature of the search space.Here, we introduce MathNAS, a general NAS framework based on mathematical programming.In MathNAS, the performances of the $m*n$ possible building blocks in the search space are calculated first, and then the performance of a network is directly predicted based on the performances of its building blocks. Although estimating block performances involves network training, just as what happens for network performance evaluation in existing NAS methods, predicting network performance is completely training-free and thus extremely fast. In contrast to the $nm$ candidate networks to evaluate in existing NAS methods, which require training and a formidable computational burden, there are only $m*n$ possible blocks to handle in MathNAS. Therefore, our approach effectively reduces the complexity of network performance evaluation.Our code is available at https://github.com/wangqinsi1/MathNAS.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.