Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Beyond Size: How Gradients Shape Pruning Decisions in Large Language Models (2311.04902v2)

Published 8 Nov 2023 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs with billions of parameters are prime targets for network pruning, removing some model weights without hurting performance. Prior approaches such as magnitude pruning, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained LLMs. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based LLM Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the pruning metric, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguingly, by incorporating gradients, unstructured pruning with our method tends to reveal some structural patterns, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various benchmarks show that GBLM-Pruner surpasses magnitude pruning, Wanda and SparseGPT by significant margins. We further extend our approach on Vision Transformer. Our code and models are available at https://github.com/VILA-Lab/GBLM-Pruner.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube