Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized Neural Mapping (2311.04838v1)

Published 8 Nov 2023 in eess.SY, cs.LG, and cs.SY

Abstract: The evolution towards a more distributed and interconnected grid necessitates large-scale decision-making within strict temporal constraints. Machine learning (ML) paradigms have demonstrated significant potential in improving the efficacy of optimization processes. However, the feasibility of solutions derived from ML models continues to pose challenges. It's imperative that ML models produce solutions that are attainable and realistic within the given system constraints of power systems. To address the feasibility issue and expedite the solution search process, we proposed LOOP-LC 2.0(Learning to Optimize the Optimization Process with Linear Constraints version 2.0) as a learning-based approach for solving the power dispatch problem. A notable advantage of the LOOP-LC 2.0 framework is its ability to ensure near-optimality and strict feasibility of solutions without depending on computationally intensive post-processing procedures, thus eliminating the need for iterative processes. At the heart of the LOOP-LC 2.0 model lies the newly proposed generalized gauge map method, capable of mapping any infeasible solution to a feasible point within the linearly-constrained domain. The proposed generalized gauge map method improves the traditional gauge map by exhibiting reduced sensitivity to input variances while increasing search speeds significantly. Utilizing the IEEE-200 test case as a benchmark, we demonstrate the effectiveness of the LOOP-LC 2.0 methodology, confirming its superior performance in terms of training speed, computational time, optimality, and solution feasibility compared to existing methodologies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.