Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Real-Time Recurrent Reinforcement Learning (2311.04830v3)

Published 8 Nov 2023 in cs.LG, cs.NE, cs.SY, and eess.SY

Abstract: We introduce a biologically plausible RL framework for solving tasks in partially observable Markov decision processes (POMDPs). The proposed algorithm combines three integral parts: (1) A Meta-RL architecture, resembling the mammalian basal ganglia; (2) A biologically plausible reinforcement learning algorithm, exploiting temporal difference learning and eligibility traces to train the policy and the value-function; (3) An online automatic differentiation algorithm for computing the gradients with respect to parameters of a shared recurrent network backbone. Our experimental results show that the method is capable of solving a diverse set of partially observable reinforcement learning tasks. The algorithm we call real-time recurrent reinforcement learning (RTRRL) serves as a model of learning in biological neural networks, mimicking reward pathways in the basal ganglia.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: