Computing pivot-minors (2311.04656v1)
Abstract: A graph $G$ contains a graph $H$ as a pivot-minor if $H$ can be obtained from $G$ by applying a sequence of vertex deletions and edge pivots. Pivot-minors play an important role in the study of rank-width. Pivot-minors have mainly been studied from a structural perspective. In this paper we perform the first systematic computational complexity study of pivot-minors. We first prove that the Pivot-Minor problem, which asks if a given graph $G$ contains a pivot-minor isomorphic to a given graph $H$, is NP-complete. If $H$ is not part of the input, we denote the problem by $H$-Pivot-Minor. We give a certifying polynomial-time algorithm for $H$-Pivot-Minor when (1) $H$ is an induced subgraph of $P_3+tP_1$ for some integer $t\geq 0$, (2) $H=K_{1,t}$ for some integer $t\geq 1$, or (3) $|V(H)|\leq 4$ except when $H \in {K_4,C_3+ P_1}$. Let ${\cal F}_H$ be the set of induced-subgraph-minimal graphs that contain a pivot-minor isomorphic to $H$. To prove the above statement, we either show that there is an integer $c_H$ such that all graphs in ${\cal F}_H$ have at most $c_H$ vertices, or we determine ${\cal F}_H$ precisely, for each of the above cases.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.