A quantum central path algorithm for linear optimization (2311.03977v2)
Abstract: We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path. While interior point methods follow the central path with an iterative algorithm that works with successive linearizations of the perturbed KKT conditions, we perform a single simulation working directly with the nonlinear complementarity equations. This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $\varepsilon$-optimality using $\mathcal{O} \left( \sqrt{m + n} \frac{R_{1}}{\varepsilon}\right)$ queries to an oracle that evaluates a potential function, where $R_{1}$ is an $\ell_{1}$-norm upper bound on the size of the optimal solution. In the standard gate model (i.e., without access to quantum RAM) our algorithm can obtain highly-precise solutions to LO problems using at most $$\mathcal{O} \left( \sqrt{m + n} \textsf{nnz} (A) \frac{R_1}{\varepsilon}\right)$$ elementary gates, where $\textsf{nnz} (A)$ is the total number of non-zero elements found in the constraint matrix.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.