Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving the Effectiveness of Deep Generative Data (2311.03959v2)

Published 7 Nov 2023 in cs.CV

Abstract: Recent deep generative models (DGMs) such as generative adversarial networks (GANs) and diffusion probabilistic models (DPMs) have shown their impressive ability in generating high-fidelity photorealistic images. Although looking appealing to human eyes, training a model on purely synthetic images for downstream image processing tasks like image classification often results in an undesired performance drop compared to training on real data. Previous works have demonstrated that enhancing a real dataset with synthetic images from DGMs can be beneficial. However, the improvements were subjected to certain circumstances and yet were not comparable to adding the same number of real images. In this work, we propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset. We hypothesize that the Content Gap accounts for a large portion of the performance drop when using synthetic images from DGM and propose strategies to better utilize them in downstream tasks. Extensive experiments on multiple datasets showcase that our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data (Data Augmentation), particularly in the data-scarce scenario.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.