Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved MDL Estimators Using Fiber Bundle of Local Exponential Families for Non-exponential Families (2311.03852v1)

Published 7 Nov 2023 in cs.IT, cs.LG, and math.IT

Abstract: Minimum Description Length (MDL) estimators, using two-part codes for universal coding, are analyzed. For general parametric families under certain regularity conditions, we introduce a two-part code whose regret is close to the minimax regret, where regret of a code with respect to a target family M is the difference between the code length of the code and the ideal code length achieved by an element in M. This is a generalization of the result for exponential families by Gr\"unwald. Our code is constructed by using an augmented structure of M with a bundle of local exponential families for data description, which is not needed for exponential families. This result gives a tight upper bound on risk and loss of the MDL estimators based on the theory introduced by Barron and Cover in 1991. Further, we show that we can apply the result to mixture families, which are a typical example of non-exponential families.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.