Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Multilingual Mathematical Autoformalization (2311.03755v2)

Published 7 Nov 2023 in cs.CL and cs.LG

Abstract: Autoformalization is the task of translating natural language materials into machine-verifiable formalisations. Progress in autoformalization research is hindered by the lack of a sizeable dataset consisting of informal-formal pairs expressing the same essence. Existing methods tend to circumvent this challenge by manually curating small corpora or using few-shot learning with LLMs. But these methods suffer from data scarcity and formal language acquisition difficulty. In this work, we create $\texttt{MMA}$, a large, flexible, multilingual, and multi-domain dataset of informal-formal pairs, by using a LLM to translate in the reverse direction, that is, from formal mathematical statements into corresponding informal ones. Experiments show that LLMs fine-tuned on $\texttt{MMA}$ produce $16-18\%$ of statements acceptable with minimal corrections on the $\texttt{miniF2F}$ and $\texttt{ProofNet}$ benchmarks, up from $0\%$ with the base model. We demonstrate that fine-tuning on multilingual formal data results in more capable autoformalization models even when deployed on monolingual tasks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube