Papers
Topics
Authors
Recent
2000 character limit reached

Low-Rank MDPs with Continuous Action Spaces (2311.03564v2)

Published 6 Nov 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Low-Rank Markov Decision Processes (MDPs) have recently emerged as a promising framework within the domain of reinforcement learning (RL), as they allow for provably approximately correct (PAC) learning guarantees while also incorporating ML algorithms for representation learning. However, current methods for low-rank MDPs are limited in that they only consider finite action spaces, and give vacuous bounds as $|\mathcal{A}| \to \infty$, which greatly limits their applicability. In this work, we study the problem of extending such methods to settings with continuous actions, and explore multiple concrete approaches for performing this extension. As a case study, we consider the seminal FLAMBE algorithm (Agarwal et al., 2020), which is a reward-agnostic method for PAC RL with low-rank MDPs. We show that, without any modifications to the algorithm, we obtain a similar PAC bound when actions are allowed to be continuous. Specifically, when the model for transition functions satisfies a H\"older smoothness condition w.r.t. actions, and either the policy class has a uniformly bounded minimum density or the reward function is also H\"older smooth, we obtain a polynomial PAC bound that depends on the order of smoothness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 7 likes about this paper.