Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PowerFlowNet: Power Flow Approximation Using Message Passing Graph Neural Networks (2311.03415v3)

Published 6 Nov 2023 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Accurate and efficient power flow (PF) analysis is crucial in modern electrical networks' operation and planning. Therefore, there is a need for scalable algorithms that can provide accurate and fast solutions for both small and large scale power networks. As the power network can be interpreted as a graph, Graph Neural Networks (GNNs) have emerged as a promising approach for improving the accuracy and speed of PF approximations by exploiting information sharing via the underlying graph structure. In this study, we introduce PowerFlowNet, a novel GNN architecture for PF approximation that showcases similar performance with the traditional Newton-Raphson method but achieves it 4 times faster in the simple IEEE 14-bus system and 145 times faster in the realistic case of the French high voltage network (6470rte). Meanwhile, it significantly outperforms other traditional approximation methods, such as the DC relaxation method, in terms of performance and execution time; therefore, making PowerFlowNet a highly promising solution for real-world PF analysis. Furthermore, we verify the efficacy of our approach by conducting an in-depth experimental evaluation, thoroughly examining the performance, scalability, interpretability, and architectural dependability of PowerFlowNet. The evaluation provides insights into the behavior and potential applications of GNNs in power system analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Albadi, “Power flow analysis,” in Computational Models in Engineering, K. Volkov, Ed.   Rijeka: IntechOpen, 2019, ch. 5.
  2. V. M. da Costa, N. Martins, and J. L. R. Pereira, “Developments in the newton raphson power flow formulation based on current injections,” IEEE Trans. Power Syst., vol. 14, pp. 1320–1326, 1999.
  3. A. Eltamaly and A. A. Elghaffar, “Load flow analysis by gauss-seidel method; a survey,” International Journal of Mechatronics, Electrical and Computer Technology (IJMEC) 2305-0543, 2411-6173, vol. x, 10 2017.
  4. X. Li, F. Li, H. Yuan, H. Cui, and Q. Hu, “Gpu-based fast decoupled power flow with preconditioned iterative solver and inexact newton method,” IEEE Trans. on Power Syst., vol. 32, no. 4, pp. 2695–2703, 2017.
  5. Y. Liu, N. Zhang, Y. Wang, J. Yang, and C. Kang, “Data-driven power flow linearization: A regression approach,” IEEE Trans. on Smart Grid, vol. 10, no. 3, pp. 2569–2580, 5 2019.
  6. L. Guo, Y. Zhang, X. Li, Z. Wang, Y. Liu, L. Bai, and C. Wang, “Data-Driven Power Flow Calculation Method: A Lifting Dimension Linear Regression Approach,” IEEE Trans. on Power Syst., vol. 37, no. 3, pp. 1798–1808, 5 2022.
  7. J. Chen, W. Wu, and L. A. Roald, “Data-driven piecewise linearization for distribution three-phase stochastic power flow,” IEEE Trans. on Smart Grid, vol. 13, no. 2, pp. 1035–1048, 2022.
  8. Y. Chen, C. Wu, and J. Qi, “Data-driven Power Flow Method Based on Exact Linear Regression Equations,” Journal of Modern Power Systems and Clean Energy, vol. 10, no. 3, pp. 800–804, 5 2022.
  9. Y. Liu, Y. Wang, N. Zhang, D. Lu, and C. Kang, “A data-driven approach to linearize power flow equations considering measurement noise,” IEEE Trans. on Smart Grid, vol. 11, no. 3, pp. 2576–2587, 2020.
  10. S. Ramasamy, K. Ganesan, and V. Arunachalam, “Power Flow Parameter Estimation in Power System Using Machine Learning Techniques Under Varying Load Conditions,” International Journal of Electrical and Electronics Research, vol. 10, no. 4, pp. 1299–1305, 2022.
  11. X. Hu, H. Hu, S. Verma, and Z.-L. Zhang, “Physics-guided deep neural networks for power flow analysis,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2082–2092, 2021.
  12. Y. Yang, Z. Yang, J. Yu, B. Zhang, Y. Zhang, and H. Yu, “Fast Calculation of Probabilistic Power Flow: A Model-Based Deep Learning Approach,” IEEE Trans. on Smart Grid, vol. 11, no. 3, pp. 2235–2244, 5 2020.
  13. H. Li, Y. Weng, V. Vittal, and E. Blasch, “Distribution grid topology and parameter estimation using deep-shallow neural network with physical consistency,” IEEE Trans. on Smart Grid, pp. 1–1, 2023.
  14. Q. Yang, A. Sadeghi, G. Wang, G. B. Giannakis, and J. Sun, “Power system state estimation using gauss-newton unrolled neural networks with trainable priors,” 2020 IEEE SmartGridComm, pp. 1–6, 2020.
  15. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.   OpenReview.net, 2017.
  16. W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, “A review of graph neural networks and their applications in power systems,” J. Mod. Power. Syst. Clean Energy, vol. 10, no. 2, pp. 345–360, 2022.
  17. T. Wu, I. L. Carreno, A. Scaglione, and D. Arnold, “Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms,” IEEE Trans. on Smart Grid, 2023.
  18. B. Habib, E. Isufi, W. v. Breda, A. Jongepier, and J. L. Cremer, “Deep statistical solver for distribution system state estimation,” IEEE Trans. Power Syst., pp. 1–12, 2023.
  19. L. Pagnier and M. Chertkov, “Physics-informed graphical neural network for parameter & state estimations in power systems,” CoRR, vol. abs/2102.06349, 2021. [Online]. Available: https://arxiv.org/abs/2102.06349
  20. B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M. Schoenauer, “Neural networks for power flow: Graph neural solver,” Electric Power Systems Research, vol. 189, p. 106547, 2020.
  21. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural Message Passing for Quantum Chemistry,” in International Conference on Machine Learning.   PMLR, Jul. 2017, pp. 1263–1272.
  22. J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar, “Topology adaptive graph convolutional networks,” arXiv preprint arXiv:1710.10370, 2017.
  23. T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 9 2016. [Online]. Available: https://arxiv.org/abs/1609.02907v4
  24. C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “Ac power flow data in matpower and qcqp format: itesla, rte snapshots, and pegase,” arXiv: Optimization and Control, 2016.
  25. L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “pandapower — an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6510–6521, 11 2018.
  26. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Nan Lin (17 papers)
  2. Stavros Orfanoudakis (7 papers)
  3. Nathan Ordonez Cardenas (1 paper)
  4. Juan S. Giraldo (5 papers)
  5. Pedro P. Vergara (33 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.