Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Toward Reinforcement Learning-based Rectilinear Macro Placement Under Human Constraints (2311.03383v1)

Published 3 Nov 2023 in cs.LG, cs.AI, cs.AR, and cs.HC

Abstract: Macro placement is a critical phase in chip design, which becomes more intricate when involving general rectilinear macros and layout areas. Furthermore, macro placement that incorporates human-like constraints, such as design hierarchy and peripheral bias, has the potential to significantly reduce the amount of additional manual labor required from designers. This study proposes a methodology that leverages an approach suggested by Google's Circuit Training (G-CT) to provide a learning-based macro placer that not only supports placing rectilinear cases, but also adheres to crucial human-like design principles. Our experimental results demonstrate the effectiveness of our framework in achieving power-performance-area (PPA) metrics and in obtaining placements of high quality, comparable to those produced with human intervention. Additionally, our methodology shows potential as a generalized model to address diverse macro shapes and layout areas.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: