Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Causal Structure Representation Learning of Confounders in Latent Space for Recommendation (2311.03382v2)

Published 2 Nov 2023 in cs.IR, cs.AI, cs.LG, and stat.ME

Abstract: Inferring user preferences from the historical feedback of users is a valuable problem in recommender systems. Conventional approaches often rely on the assumption that user preferences in the feedback data are equivalent to the real user preferences without additional noise, which simplifies the problem modeling. However, there are various confounders during user-item interactions, such as weather and even the recommendation system itself. Therefore, neglecting the influence of confounders will result in inaccurate user preferences and suboptimal performance of the model. Furthermore, the unobservability of confounders poses a challenge in further addressing the problem. To address these issues, we refine the problem and propose a more rational solution. Specifically, we consider the influence of confounders, disentangle them from user preferences in the latent space, and employ causal graphs to model their interdependencies without specific labels. By cleverly combining local and global causal graphs, we capture the user-specificity of confounders on user preferences. We theoretically demonstrate the identifiability of the obtained causal graph. Finally, we propose our model based on Variational Autoencoders, named Causal Structure representation learning of Confounders in latent space (CSC). We conducted extensive experiments on one synthetic dataset and five real-world datasets, demonstrating the superiority of our model. Furthermore, we demonstrate that the learned causal representations of confounders are controllable, potentially offering users fine-grained control over the objectives of their recommendation lists with the learned causal graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: