Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Separating and Learning Latent Confounders to Enhancing User Preferences Modeling (2311.03381v2)

Published 2 Nov 2023 in cs.IR, cs.AI, cs.LG, and stat.ME

Abstract: Recommender models aim to capture user preferences from historical feedback and then predict user-specific feedback on candidate items. However, the presence of various unmeasured confounders causes deviations between the user preferences in the historical feedback and the true preferences, resulting in models not meeting their expected performance. Existing debias models either (1) specific to solving one particular bias or (2) directly obtain auxiliary information from user historical feedback, which cannot identify whether the learned preferences are true user preferences or mixed with unmeasured confounders. Moreover, we find that the former recommender system is not only a successor to unmeasured confounders but also acts as an unmeasured confounder affecting user preference modeling, which has always been neglected in previous studies. To this end, we incorporate the effect of the former recommender system and treat it as a proxy for all unmeasured confounders. We propose a novel framework, Separating and Learning Latent Confounders For Recommendation (SLFR), which obtains the representation of unmeasured confounders to identify the counterfactual feedback by disentangling user preferences and unmeasured confounders, then guides the target model to capture the true preferences of users. Extensive experiments in five real-world datasets validate the advantages of our method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.