Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis (2311.03379v1)

Published 2 Nov 2023 in cs.AR and cs.PL

Abstract: Dataflow architectures are growing in popularity due to their potential to mitigate the challenges posed by the memory wall inherent to the Von Neumann architecture. At the same time, high-level synthesis (HLS) has demonstrated its efficacy as a design methodology for generating efficient dataflow architectures within a short development cycle. However, existing HLS tools rely on developers to explore the vast dataflow design space, ultimately leading to suboptimal designs. This phenomenon is especially concerning as the size of the HLS design grows. To tackle these challenges, we introduce HIDA, a new scalable and hierarchical HLS framework that can systematically convert an algorithmic description into a dataflow implementation on hardware. We first propose a collection of efficient and versatile dataflow representations for modeling the hierarchical dataflow structure. Capitalizing on these representations, we develop an automated optimizer that decomposes the dataflow optimization problem into multiple levels based on the inherent dataflow hierarchy. Using FPGAs as an evaluation platform, working with a set of neural networks modeled in PyTorch, HIDA achieves up to 8.54$\times$ higher throughput compared to the state-of-the-art (SOTA) HLS optimization tool. Furthermore, despite being fully automated and able to handle various applications, HIDA achieves 1.29$\times$ higher throughput over the SOTA RTL-based neural network accelerators on an FPGA.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.