Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Edge AI Inference in Heterogeneous Constrained Computing: Feasibility and Opportunities (2311.03375v1)

Published 27 Oct 2023 in cs.AR, cs.AI, cs.DC, and cs.NI

Abstract: The network edge's role in AI inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.