Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

TS-Diffusion: Generating Highly Complex Time Series with Diffusion Models (2311.03303v1)

Published 6 Nov 2023 in cs.LG

Abstract: While current generative models have achieved promising performances in time-series synthesis, they either make strong assumptions on the data format (e.g., regularities) or rely on pre-processing approaches (e.g., interpolations) to simplify the raw data. In this work, we consider a class of time series with three common bad properties, including sampling irregularities, missingness, and large feature-temporal dimensions, and introduce a general model, TS-Diffusion, to process such complex time series. Our model consists of three parts under the framework of point process. The first part is an encoder of the neural ordinary differential equation (ODE) that converts time series into dense representations, with the jump technique to capture sampling irregularities and self-attention mechanism to handle missing values; The second component of TS-Diffusion is a diffusion model that learns from the representation of time series. These time-series representations can have a complex distribution because of their high dimensions; The third part is a decoder of another ODE that generates time series with irregularities and missing values given their representations. We have conducted extensive experiments on multiple time-series datasets, demonstrating that TS-Diffusion achieves excellent results on both conventional and complex time series and significantly outperforms previous baselines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.