Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Maximal Consistent Subsystems of Max-T Fuzzy Relational Equations (2311.03059v1)

Published 6 Nov 2023 in cs.AI and cs.LO

Abstract: In this article, we study the inconsistency of a system of $\max-T$ fuzzy relational equations of the form $A \Box_{T}{\max} x = b$, where $T$ is a t-norm among $\min$, the product or Lukasiewicz's t-norm. For an inconsistent $\max-T$ system, we directly construct a canonical maximal consistent subsystem (w.r.t the inclusion order). The main tool used to obtain it is the analytical formula which compute the Chebyshev distance $\Delta = \inf_{c \in \mathcal{C}} \Vert b - c \Vert$ associated to the inconsistent $\max-T$ system, where $\mathcal{C}$ is the set of second members of consistent systems defined with the same matrix $A$. Based on the same analytical formula, we give, for an inconsistent $\max-\min$ system, an efficient method to obtain all its consistent subsystems, and we show how to iteratively get all its maximal consistent subsystems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)