Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

M4BRAM: Mixed-Precision Matrix-Matrix Multiplication in FPGA Block RAMs (2311.02758v1)

Published 5 Nov 2023 in cs.AR

Abstract: Mixed-precision quantization is a popular approach for compressing deep neural networks (DNNs). However, it is challenging to scale the performance efficiently with mixed-precision DNNs given the current FPGA architecture and conventional accelerator dataflows. In this work, we enhance the FPGA's capability for accelerating mixed-precision DNNs by proposing M4BRAM, a novel compute-in-block RAM (BRAM) architecture that can compute mixed-precision matrix-matrix multiplication. On the precision side, M4BRAM supports a wide range of mixed-precision DNN configurations -- the weight precision can be 2/4/8 bits while the activation precision can vary from 2 to 8 bits. On the dataflow side, M4BRAM leverages a novel in-BRAM data duplication scheme to achieve high hardware utilization. Moreover, during M4BRAM computation, other FPGA resources can seamlessly access its data without the need for a separate buffer. Hence, unlike prior compute-in-BRAM proposals, M4BRAM can simultaneously perform mixed-precision computation and maintain full functionality as a memory unit to \textit{truly} complement the existing compute resources on FPGAs. Experiments show that adding M4BRAM to a tiled DNN accelerator can achieve an average speedup of 2.16$\times$ across various DNNs on the ImageNet classification task while incurring a negligible accuracy loss of $<$ 0.5%. Compared to the same tiled accelerator that employs a prior compute-in-BRAM architecture, M4BRAM delivers 1.43$\times$ higher performance on average across various DNNs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.