Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Solving High Dimensional Partial Differential Equations Using Tensor Neural Network and A Posteriori Error Estimators (2311.02732v2)

Published 5 Nov 2023 in math.NA and cs.NA

Abstract: In this paper, based on the combination of tensor neural network and a posteriori error estimator, a novel type of machine learning method is proposed to solve high-dimensional boundary value problems with homogeneous and non-homogeneous Dirichlet or Neumann type of boundary conditions and eigenvalue problems of the second-order elliptic operator. The most important advantage of the tensor neural network is that the high dimensional integrations of tensor neural networks can be computed with high accuracy and high efficiency. Based on this advantage and the theory of a posteriori error estimation, the a posteriori error estimator is adopted to design the loss function to optimize the network parameters adaptively. The applications of tensor neural network and the a posteriori error estimator improve the accuracy of the corresponding machine learning method. The theoretical analysis and numerical examples are provided to validate the proposed methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.