Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Some Results on Random Mixed SAT Problems (2311.02644v1)

Published 5 Nov 2023 in math.PR and cs.CC

Abstract: In this short paper we present a survey of some results concerning the random SAT problems. To elaborate, the Boolean Satisfiability (SAT) Problem refers to the problem of determining whether a given set of $m$ Boolean constraints over $n$ variables can be simultaneously satisfied, i.e. all evaluate to $1$ under some interpretation of the variables in ${ 0,1}$. If we choose the $m$ constraints i.i.d. uniformly at random among the set of disjunctive clauses of length $k$, then the problem is known as the random $k$-SAT problem. It is conjectured that this problem undergoes a structural phase transition; taking $m=\alpha n$ for $\alpha>0$, it is believed that the probability of there existing a satisfying assignment tends in the large $n$ limit to $1$ if $\alpha<\alpha_\mathrm{sat}(k)$, and to $0$ if $\alpha>\alpha_\mathrm{sat}(k)$, for some critical value $\alpha_\mathrm{sat}(k)$ depending on $k$. We review some of the progress made towards proving this and consider similar conjectures and results for the more general case where the clauses are chosen with varying lengths, i.e. for the so-called random mixed SAT problems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.