Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PotholeGuard: A Pothole Detection Approach by Point Cloud Semantic Segmentation (2311.02641v1)

Published 5 Nov 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Pothole detection is crucial for road safety and maintenance, traditionally relying on 2D image segmentation. However, existing 3D Semantic Pothole Segmentation research often overlooks point cloud sparsity, leading to suboptimal local feature capture and segmentation accuracy. Our research presents an innovative point cloud-based pothole segmentation architecture. Our model efficiently identifies hidden features and uses a feedback mechanism to enhance local characteristics, improving feature presentation. We introduce a local relationship learning module to understand local shape relationships, enhancing structural insights. Additionally, we propose a lightweight adaptive structure for refining local point features using the K nearest neighbor algorithm, addressing point cloud density differences and domain selection. Shared MLP Pooling is integrated to learn deep aggregation features, facilitating semantic data exploration and segmentation guidance. Extensive experiments on three public datasets confirm PotholeGuard's superior performance over state-of-the-art methods. Our approach offers a promising solution for robust and accurate 3D pothole segmentation, with applications in road maintenance and safety.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube