Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Divide & Conquer for Entailment-aware Multi-hop Evidence Retrieval (2311.02616v1)

Published 5 Nov 2023 in cs.CL and cs.IR

Abstract: Lexical and semantic matches are commonly used as relevance measurements for information retrieval. Together they estimate the semantic equivalence between the query and the candidates. However, semantic equivalence is not the only relevance signal that needs to be considered when retrieving evidences for multi-hop questions. In this work, we demonstrate that textual entailment relation is another important relevance dimension that should be considered. To retrieve evidences that are either semantically equivalent to or entailed by the question simultaneously, we divide the task of evidence retrieval for multi-hop question answering (QA) into two sub-tasks, i.e., semantic textual similarity and inference similarity retrieval. We propose two ensemble models, EAR and EARnest, which tackle each of the sub-tasks separately and then jointly re-rank sentences with the consideration of the diverse relevance signals. Experimental results on HotpotQA verify that our models not only significantly outperform all the single retrieval models it is based on, but is also more effective than two intuitive ensemble baseline models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)