Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Class and Domain Augmentations for Single-Source Open-Domain Generalization (2311.02599v1)

Published 5 Nov 2023 in cs.CV

Abstract: Single-source open-domain generalization (SS-ODG) addresses the challenge of labeled source domains with supervision during training and unlabeled novel target domains during testing. The target domain includes both known classes from the source domain and samples from previously unseen classes. Existing techniques for SS-ODG primarily focus on calibrating source-domain classifiers to identify open samples in the target domain. However, these methods struggle with visually fine-grained open-closed data, often misclassifying open samples as closed-set classes. Moreover, relying solely on a single source domain restricts the model's ability to generalize. To overcome these limitations, we propose a novel framework called SODG-Net that simultaneously synthesizes novel domains and generates pseudo-open samples using a learning-based objective, in contrast to the ad-hoc mixing strategies commonly found in the literature. Our approach enhances generalization by diversifying the styles of known class samples using a novel metric criterion and generates diverse pseudo-open samples to train a unified and confident multi-class classifier capable of handling both open and closed-set data. Extensive experimental evaluations conducted on multiple benchmarks consistently demonstrate the superior performance of SODG-Net compared to the literature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.