Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection (2311.02573v2)

Published 5 Nov 2023 in cs.DS and cs.CV

Abstract: This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem. Our method efficiently marks each item in a database as neighbor or non-neighbor of a query point, based on a cosine distance threshold without exhaustive search. Like other methods for large scale retrieval, our approach exploits the assumption that most of the items in the database are unrelated to the query. However, it does not assume a large difference between the cosine similarity of the query vector with the least related neighbor and that with the least unrelated non-neighbor. Following a multi-stage adaptive group testing algorithm based on binary splitting, we divide the set of items to be searched into half at each step, and perform dot product tests on smaller and smaller subsets, many of which we are able to prune away. We show that, using softmax-based features, our method achieves a more than ten-fold speed-up over exhaustive search with no loss of accuracy, on a variety of large datasets. Based on empirically verified models for the distribution of cosine distances, we present a theoretical analysis of the expected number of distance computations per query and the probability that a pool will be pruned. Our method has the following features: (i) It implicitly exploits useful distributional properties of cosine distances unlike other methods; (ii) All required data structures are created purely offline; (iii) It does not impose any strong assumptions on the number of true near neighbors; (iv) It is adaptable to streaming settings where new vectors are dynamically added to the database; and (v) It does not require any parameter tuning. The high recall of our technique makes it particularly suited to plagiarism detection scenarios where it is important to report every database item that is sufficiently similar item to the query.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com