Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BarcodeBERT: Transformers for Biodiversity Analysis (2311.02401v2)

Published 4 Nov 2023 in cs.LG

Abstract: In the global challenge of understanding and characterizing biodiversity, short species-specific genomic sequences known as DNA barcodes play a critical role, enabling fine-grained comparisons among organisms within the same kingdom of life. Although machine learning algorithms specifically designed for the analysis of DNA barcodes are becoming more popular, most existing methodologies rely on generic supervised training algorithms. We introduce BarcodeBERT, a family of models tailored to biodiversity analysis and trained exclusively on data from a reference library of 1.5M invertebrate DNA barcodes. We compared the performance of BarcodeBERT on taxonomic identification tasks against a spectrum of machine learning approaches including supervised training of classical neural architectures and fine-tuning of general DNA foundation models. Our self-supervised pretraining strategies on domain-specific data outperform fine-tuned foundation models, especially in identification tasks involving lower taxa such as genera and species. We also compared BarcodeBERT with BLAST, one of the most widely used bioinformatics tools for sequence searching, and found that our method matched BLAST's performance in species-level classification while being 55 times faster. Our analysis of masking and tokenization strategies also provides practical guidance for building customized DNA LLMs, emphasizing the importance of aligning model training strategies with dataset characteristics and domain knowledge. The code repository is available at https://github.com/bioscan-ml/BarcodeBERT.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com