Emergent Mind

Abstract

Meta learning is a promising technique for solving few-shot fault prediction problems, which have attracted the attention of many researchers in recent years. Existing meta-learning methods for time series prediction, which predominantly rely on random and similarity matching-based task partitioning, face three major limitations: (1) feature exploitation inefficiency; (2) suboptimal task data allocation; and (3) limited robustness with small samples. To overcome these limitations, we introduce a novel 'pseudo meta-task' partitioning scheme that treats a continuous time period of a time series as a meta-task, composed of multiple successive short time periods. Employing continuous time series as pseudo meta-tasks allows our method to extract more comprehensive features and relationships from the data, resulting in more accurate predictions. Moreover, we introduce a differential algorithm to enhance the robustness of our method across different datasets. Through extensive experiments on several fault and time series prediction datasets, we demonstrate that our approach substantially enhances prediction performance and generalization capability under both few-shot and general conditions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.