COSMIC: Data Efficient Instruction-tuning For Speech In-Context Learning (2311.02248v2)
Abstract: We present a cost-effective method to integrate speech into a LLM, resulting in a Contextual Speech Model with Instruction-following/in-context-learning Capabilities (COSMIC) multi-modal LLM. Using GPT-3.5, we generate Speech Comprehension Test Question-Answer (SQA) pairs from speech transcriptions for supervised instruction tuning. With under 30 million trainable parameters and only 450 hours of English speech data, COSMIC demonstrates emerging capabilities in instruction-following and in-context learning. Equipped with such capabilities, COSMIC achieves a maximum 33.18 BLEU score in 0-shot EN-to-X speech to text translation (S2TT) and a significant boost in the 1-shot setting. Additionally, there is an average 25.8\% relative Word Error Rate (WER) reduction for 1-shot cross-domain adaptation. COSMIC exhibits a significant automatic speech recognition (ASR) accuracy gain in contextual biasing tasks due to its instruction-following capability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.