Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust Fine-Tuning of Vision-Language Models for Domain Generalization (2311.02236v1)

Published 3 Nov 2023 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: Transfer learning enables the sharing of common knowledge among models for a variety of downstream tasks, but traditional methods suffer in limited training data settings and produce narrow models incapable of effectively generalizing under distribution shifts. Foundation models have recently demonstrated impressive zero-shot inference capabilities and robustness under distribution shifts. However, zero-shot evaluation for these models has been predominantly confined to benchmarks with simple distribution shifts, limiting our understanding of their effectiveness under the more realistic shifts found in practice. Moreover, common fine-tuning methods for these models have yet to be evaluated against vision models in few-shot scenarios where training data is limited. To address these gaps, we present a new recipe for few-shot fine-tuning of the popular vision-language foundation model CLIP and evaluate its performance on challenging benchmark datasets with realistic distribution shifts from the WILDS collection. Our experimentation demonstrates that, while zero-shot CLIP fails to match performance of trained vision models on more complex benchmarks, few-shot CLIP fine-tuning outperforms its vision-only counterparts in terms of in-distribution and out-of-distribution accuracy at all levels of training data availability. This provides a strong incentive for adoption of foundation models within few-shot learning applications operating with real-world data. Code is available at https://github.com/mit-ll/robust-vision-language-finetuning

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.