Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings (2311.02172v1)

Published 3 Nov 2023 in cs.CG

Abstract: Given a $d$-dimensional continuous (resp. discrete) probability distribution $\mu$ and a discrete distribution $\nu$, the semi-discrete (resp. discrete) Optimal Transport (OT) problem asks for computing a minimum-cost plan to transport mass from $\mu$ to $\nu$; we assume $n$ to be the size of the support of the discrete distributions, and we assume we have access to an oracle outputting the mass of $\mu$ inside a constant-complexity region in $O(1)$ time. In this paper, we present three approximation algorithms for the OT problem. (i) Semi-discrete additive approximation: For any $\epsilon>0$, we present an algorithm that computes a semi-discrete transport plan with $\epsilon$-additive error in $n{O(d)}\log\frac{C_{\max}}{\epsilon}$ time; here, $C_{\max}$ is the diameter of the supports of $\mu$ and $\nu$. (ii) Semi-discrete relative approximation: For any $\epsilon>0$, we present an algorithm that computes a $(1+\epsilon)$-approximate semi-discrete transport plan in $n\epsilon{-O(d)}\log(n)\log{O(d)}(\log n)$ time; here, we assume the ground distance is any $L_p$ norm. (iii) Discrete relative approximation: For any $\epsilon>0$, we present a Monte-Carlo $(1+\epsilon)$-approximation algorithm that computes a transport plan under any $L_p$ norm in $n\epsilon{-O(d)}\log(n)\log{O(d)}(\log n)$ time; here, we assume that the spread of the supports of $\mu$ and $\nu$ is polynomially bounded.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.