Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings (2311.02172v1)

Published 3 Nov 2023 in cs.CG

Abstract: Given a $d$-dimensional continuous (resp. discrete) probability distribution $\mu$ and a discrete distribution $\nu$, the semi-discrete (resp. discrete) Optimal Transport (OT) problem asks for computing a minimum-cost plan to transport mass from $\mu$ to $\nu$; we assume $n$ to be the size of the support of the discrete distributions, and we assume we have access to an oracle outputting the mass of $\mu$ inside a constant-complexity region in $O(1)$ time. In this paper, we present three approximation algorithms for the OT problem. (i) Semi-discrete additive approximation: For any $\epsilon>0$, we present an algorithm that computes a semi-discrete transport plan with $\epsilon$-additive error in $n{O(d)}\log\frac{C_{\max}}{\epsilon}$ time; here, $C_{\max}$ is the diameter of the supports of $\mu$ and $\nu$. (ii) Semi-discrete relative approximation: For any $\epsilon>0$, we present an algorithm that computes a $(1+\epsilon)$-approximate semi-discrete transport plan in $n\epsilon{-O(d)}\log(n)\log{O(d)}(\log n)$ time; here, we assume the ground distance is any $L_p$ norm. (iii) Discrete relative approximation: For any $\epsilon>0$, we present a Monte-Carlo $(1+\epsilon)$-approximation algorithm that computes a transport plan under any $L_p$ norm in $n\epsilon{-O(d)}\log(n)\log{O(d)}(\log n)$ time; here, we assume that the spread of the supports of $\mu$ and $\nu$ is polynomially bounded.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.