Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Relax: Composable Abstractions for End-to-End Dynamic Machine Learning (2311.02103v2)

Published 1 Nov 2023 in cs.LG, cs.AI, and cs.PL

Abstract: Dynamic shape computations have become critical in modern machine learning workloads, especially in emerging LLMs. The success of these models has driven the demand for their universal deployment across a diverse set of backend environments. In this paper, we present Relax, a compiler abstraction for optimizing end-to-end dynamic machine learning workloads. Relax introduces a cross-level abstraction that encapsulates computational graphs, loop-level tensor programs, and external library calls in a single representation. Relax also introduces first-class symbolic shape annotations to track dynamic shape computations globally across the program, enabling dynamic shape-aware cross-level optimizations. We build an end-to-end compilation framework using the proposed approach to optimize dynamic shape models. Experimental results on LLMs show that Relax delivers performance competitive with state-of-the-art systems across various GPUs and enables deployment of emerging models to a broader set of emerging environments, including mobile phones, embedded devices, and web browsers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.