Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Universal Multi-modal Multi-domain Pre-trained Recommendation (2311.01831v1)

Published 3 Nov 2023 in cs.IR

Abstract: There is a rapidly-growing research interest in modeling user preferences via pre-training multi-domain interactions for recommender systems. However, Existing pre-trained multi-domain recommendations mostly select the item texts to be bridges across domains, and simply explore the user behaviors in target domains. Hence, they ignore other informative multi-modal item contents (e.g., visual information), and also lack of thorough consideration of user behaviors from all interactive domains. To address these issues, in this paper, we propose to pre-train universal multi-modal item content presentation for multi-domain recommendation, called UniM2Rec, which could smoothly learn the multi-modal item content presentations and the multi-modal user preferences from all domains. With the pre-trained multi-domain recommendation model, UniM2Rec could be efficiently and effectively transferred to new target domains in practice. Extensive experiments conducted on five real-world datasets in target domains demonstrate the superiority of the proposed method over existing competitive methods, especially for the real-world recommendation scenarios that usually struggle with seriously missing or noisy item contents.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.