Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sketching for Convex and Nonconvex Regularized Least Squares with Sharp Guarantees (2311.01806v1)

Published 3 Nov 2023 in math.OC, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Randomized algorithms are important for solving large-scale optimization problems. In this paper, we propose a fast sketching algorithm for least square problems regularized by convex or nonconvex regularization functions, Sketching for Regularized Optimization (SRO). Our SRO algorithm first generates a sketch of the original data matrix, then solves the sketched problem. Different from existing randomized algorithms, our algorithm handles general Frechet subdifferentiable regularization functions in an unified framework. We present general theoretical result for the approximation error between the optimization results of the original problem and the sketched problem for regularized least square problems which can be convex or nonconvex. For arbitrary convex regularizer, relative-error bound is proved for the approximation error. Importantly, minimax rates for sparse signal estimation by solving the sketched sparse convex or nonconvex learning problems are also obtained using our general theoretical result under mild conditions. To the best of our knowledge, our results are among the first to demonstrate minimax rates for convex or nonconvex sparse learning problem by sketching under a unified theoretical framework. We further propose an iterative sketching algorithm which reduces the approximation error exponentially by iteratively invoking the sketching algorithm. Experimental results demonstrate the effectiveness of the proposed SRO and Iterative SRO algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube