Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards a Unified Transformer-based Framework for Scene Graph Generation and Human-object Interaction Detection (2311.01755v1)

Published 3 Nov 2023 in cs.CV

Abstract: Scene graph generation (SGG) and human-object interaction (HOI) detection are two important visual tasks aiming at localising and recognising relationships between objects, and interactions between humans and objects, respectively. Prevailing works treat these tasks as distinct tasks, leading to the development of task-specific models tailored to individual datasets. However, we posit that the presence of visual relationships can furnish crucial contextual and intricate relational cues that significantly augment the inference of human-object interactions. This motivates us to think if there is a natural intrinsic relationship between the two tasks, where scene graphs can serve as a source for inferring human-object interactions. In light of this, we introduce SG2HOI+, a unified one-step model based on the Transformer architecture. Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection. Concretely, we initiate a relation Transformer tasked with generating relation triples from a suite of visual features. Subsequently, we employ another transformer-based decoder to predict human-object interactions based on the generated relation triples. A comprehensive series of experiments conducted across established benchmark datasets including Visual Genome, V-COCO, and HICO-DET demonstrates the compelling performance of our SG2HOI+ model in comparison to prevalent one-stage SGG models. Remarkably, our approach achieves competitive performance when compared to state-of-the-art HOI methods. Additionally, we observe that our SG2HOI+ jointly trained on both SGG and HOI tasks in an end-to-end manner yields substantial improvements for both tasks compared to individualized training paradigms.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.