Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adapting Frechet Audio Distance for Generative Music Evaluation (2311.01616v2)

Published 2 Nov 2023 in eess.AS

Abstract: The growing popularity of generative music models underlines the need for perceptually relevant, objective music quality metrics. The Frechet Audio Distance (FAD) is commonly used for this purpose even though its correlation with perceptual quality is understudied. We show that FAD performance may be hampered by sample size bias, poor choice of audio embeddings, or the use of biased or low-quality reference sets. We propose reducing sample size bias by extrapolating scores towards an infinite sample size. Through comparisons with MusicCaps labels and a listening test we identify audio embeddings and music reference sets that yield FAD scores well-correlated with acoustic and musical quality. Our results suggest that per-song FAD can be useful to identify outlier samples and predict perceptual quality for a range of music sets and generative models. Finally, we release a toolkit that allows adapting FAD for generative music evaluation.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.