Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Frechet Audio Distance for Generative Music Evaluation (2311.01616v2)

Published 2 Nov 2023 in eess.AS

Abstract: The growing popularity of generative music models underlines the need for perceptually relevant, objective music quality metrics. The Frechet Audio Distance (FAD) is commonly used for this purpose even though its correlation with perceptual quality is understudied. We show that FAD performance may be hampered by sample size bias, poor choice of audio embeddings, or the use of biased or low-quality reference sets. We propose reducing sample size bias by extrapolating scores towards an infinite sample size. Through comparisons with MusicCaps labels and a listening test we identify audio embeddings and music reference sets that yield FAD scores well-correlated with acoustic and musical quality. Our results suggest that per-song FAD can be useful to identify outlier samples and predict perceptual quality for a range of music sets and generative models. Finally, we release a toolkit that allows adapting FAD for generative music evaluation.

Citations (44)

Summary

We haven't generated a summary for this paper yet.