Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ATGNN: Audio Tagging Graph Neural Network (2311.01526v1)

Published 2 Nov 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Deep learning models such as CNNs and Transformers have achieved impressive performance for end-to-end audio tagging. Recent works have shown that despite stacking multiple layers, the receptive field of CNNs remains severely limited. Transformers on the other hand are able to map global context through self-attention, but treat the spectrogram as a sequence of patches which is not flexible enough to capture irregular audio objects. In this work, we treat the spectrogram in a more flexible way by considering it as graph structure and process it with a novel graph neural architecture called ATGNN. ATGNN not only combines the capability of CNNs with the global information sharing ability of Graph Neural Networks, but also maps semantic relationships between learnable class embeddings and corresponding spectrogram regions. We evaluate ATGNN on two audio tagging tasks, where it achieves 0.585 mAP on the FSD50K dataset and 0.335 mAP on the AudioSet-balanced dataset, achieving comparable results to Transformer based models with significantly lower number of learnable parameters.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.