Papers
Topics
Authors
Recent
2000 character limit reached

The Behavior of Large Language Models When Prompted to Generate Code Explanations (2311.01490v2)

Published 2 Nov 2023 in cs.SE and cs.AI

Abstract: This paper systematically investigates the generation of code explanations by LLMs for code examples commonly encountered in introductory programming courses. Our findings reveal significant variations in the nature of code explanations produced by LLMs, influenced by factors such as the wording of the prompt, the specific code examples under consideration, the programming language involved, the temperature parameter, and the version of the LLM. However, a consistent pattern emerges for Java and Python, where explanations exhibit a Flesch-Kincaid readability level of approximately 7-8 grade and a consistent lexical density, indicating the proportion of meaningful words relative to the total explanation size. Additionally, the generated explanations consistently achieve high scores for correctness, but lower scores on three other metrics: completeness, conciseness, and specificity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.