Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Detecting Out-of-Distribution Through the Lens of Neural Collapse (2311.01479v7)

Published 2 Nov 2023 in cs.LG and eess.IV

Abstract: Out-of-Distribution (OOD) detection is critical for safe deployment; however, existing detectors often struggle to generalize across datasets of varying scales and model architectures, and some can incur high computational costs in real-world applications. Inspired by the phenomenon of Neural Collapse, we propose a versatile and efficient OOD detection method. Specifically, we re-characterize prior observations that in-distribution (ID) samples form clusters, demonstrating that, with appropriate centering, these clusters align closely with model weight vectors. Additionally, we reveal that ID features tend to expand into a simplex Equiangular Tight Frame, explaining the common observation that ID features are situated farther from the origin than OOD features. Incorporating both insights from Neural Collapse, our OOD detector leverages feature proximity to weight vectors and complements this approach by using feature norms to effectively filter out OOD samples. Extensive experiments on off-the-shelf models demonstrate the robustness of our OOD detector across diverse scenarios, mitigating generalization discrepancies and enhancing overall performance, with inference latency comparable to that of the basic softmax-confidence detector. Code is available here: https://github.com/litianliu/NCI-OOD.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube