Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Empirical Lossless Compression Bound of a Data Sequence (2311.01431v2)

Published 2 Nov 2023 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider the lossless compression bound of any individual data sequence. If we fit the data by a parametric model, the entropy quantity $nH({\hat \theta}n)$ obtained by plugging in the maximum likelihood estimate is an underestimate of the bound, where $n$ is the number of words. Shtarkov showed that the normalized maximum likelihood (NML) distribution or code length is optimal in a minimax sense for any parametric family. We show by the local asymptotic normality that the NML code length for the exponential families is $nH(\hat \theta_n) +\frac{d}{2}\log \, \frac{n}{2\pi} +\log \int{\Theta} |I(\theta)|{1/2}\, d\theta+o(1)$, where $d$ is the model dimension or dictionary size, and $|I(\theta)|$ is the determinant of the Fisher information matrix. We also demonstrate that sequentially predicting the optimal code length for the next word via a Bayesian mechanism leads to the mixture code, whose pathwise length is given by $nH({\hat \theta}_n) +\frac{d}{2}\log \, \frac{n}{2\pi} +\log \frac{|\, I({\hat \theta}_n)|{1/2}}{w({\hat \theta}_n)}+o(1) $, where $w(\theta)$ is a prior. The asymptotics apply to not only discrete symbols but also continuous data if the code length for the former is replaced by the description length for the latter. The analytical result is exemplified by calculating compression bounds of protein-encoding DNA sequences under different parsing models. Typically, the highest compression is achieved when the parsing is in phase of the amino acid codons. On the other hand, the compression rates of pseudo-random sequences are larger than 1 regardless parsing models. These model-based results are in consistency with that random sequences are incompressible as asserted by the Kolmogorov complexity theory. The empirical lossless compression bound is particularly more accurate when dictionary size is relatively large.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)