Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

C3DM: Constrained-Context Conditional Diffusion Models for Imitation Learning (2311.01419v2)

Published 2 Nov 2023 in cs.RO

Abstract: Behavior Cloning (BC) methods are effective at learning complex manipulation tasks. However, they are prone to spurious correlation - expressive models may focus on distractors that are irrelevant to action prediction - and are thus fragile in real-world deployment. Prior methods have addressed this challenge by exploring different model architectures and action representations. However, none were able to balance between sample efficiency and robustness against distractors for solving manipulation tasks with a complex action space. We present \textbf{C}onstrained-\textbf{C}ontext \textbf{C}onditional \textbf{D}iffusion \textbf{M}odel (C3DM), a diffusion model policy for solving 6-DoF robotic manipulation tasks with robustness to distractions that can learn deployable robot policies from as little as five demonstrations. A key component of C3DM is a fixation step that helps the action denoiser to focus on task-relevant regions around a predicted fixation point while ignoring distractors in the context. We empirically show that C3DM is robust to out-of-distribution distractors, and consistently achieves high success rates on a wide array of tasks, ranging from table-top manipulation to industrial kitting that require varying levels of precision and robustness to distractors.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: