Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Expanding Expressiveness of Diffusion Models with Limited Data via Self-Distillation based Fine-Tuning (2311.01018v1)

Published 2 Nov 2023 in cs.CV

Abstract: Training diffusion models on limited datasets poses challenges in terms of limited generation capacity and expressiveness, leading to unsatisfactory results in various downstream tasks utilizing pretrained diffusion models, such as domain translation and text-guided image manipulation. In this paper, we propose Self-Distillation for Fine-Tuning diffusion models (SDFT), a methodology to address these challenges by leveraging diverse features from diffusion models pretrained on large source datasets. SDFT distills more general features (shape, colors, etc.) and less domain-specific features (texture, fine details, etc) from the source model, allowing successful knowledge transfer without disturbing the training process on target datasets. The proposed method is not constrained by the specific architecture of the model and thus can be generally adopted to existing frameworks. Experimental results demonstrate that SDFT enhances the expressiveness of the diffusion model with limited datasets, resulting in improved generation capabilities across various downstream tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube