Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Combinatorial Assignment in Independence Systems (2311.00890v1)

Published 1 Nov 2023 in cs.DS

Abstract: We consider an online multi-weighted generalization of several classic online optimization problems, called the online combinatorial assignment problem. We are given an independence system over a ground set of elements and agents that arrive online one by one. Upon arrival, each agent reveals a weight function over the elements of the ground set. If the independence system is given by the matchings of a hypergraph we recover the combinatorial auction problem, where every node represents an item to be sold, and every edge represents a bundle of items. For combinatorial auctions, Kesselheim et al. showed upper bounds of O(loglog(k)/log(k)) and $O(\log \log(n)/\log(n))$ on the competitiveness of any online algorithm, even in the random order model, where $k$ is the maximum bundle size and $n$ is the number of items. We provide an exponential improvement on these upper bounds to show that the competitiveness of any online algorithm in the prophet IID setting is upper bounded by $O(\log(k)/k)$, and $O(\log(n)/\sqrt{n})$. Furthermore, using linear programming, we provide new and improved guarantees for the $k$-bounded online combinatorial auction problem (i.e., bundles of size at most $k$). We show a $(1-e{-k})/k$-competitive algorithm in the prophet IID model, a $1/(k+1)$-competitive algorithm in the prophet-secretary model using a single sample per agent, and a $k{-k/(k-1)}$-competitive algorithm in the secretary model. Our algorithms run in polynomial time and work in more general independence systems where the offline combinatorial assignment problem admits the existence of a polynomial-time randomized algorithm that we call certificate sampler. We show that certificate samplers have a nice interplay with random order models, and we also provide new polynomial-time competitive algorithms for some classes of matroids, matroid intersections, and matchoids.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube