Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Investigating Self-Supervised Deep Representations for EEG-based Auditory Attention Decoding (2311.00814v2)

Published 1 Nov 2023 in cs.SD and eess.AS

Abstract: Auditory Attention Decoding (AAD) algorithms play a crucial role in isolating desired sound sources within challenging acoustic environments directly from brain activity. Although recent research has shown promise in AAD using shallow representations such as auditory envelope and spectrogram, there has been limited exploration of deep Self-Supervised (SS) representations on a larger scale. In this study, we undertake a comprehensive investigation into the performance of linear decoders across 12 deep and 2 shallow representations, applied to EEG data from multiple studies spanning 57 subjects and multiple languages. Our experimental results consistently reveal the superiority of deep features for AAD at decoding background speakers, regardless of the datasets and analysis windows. This result indicates possible nonlinear encoding of unattended signals in the brain that are revealed using deep nonlinear features. Additionally, we analyze the impact of different layers of SS representations and window sizes on AAD performance. These findings underscore the potential for enhancing EEG-based AAD systems through the integration of deep feature representations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.