Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

VQA-GEN: A Visual Question Answering Benchmark for Domain Generalization (2311.00807v1)

Published 1 Nov 2023 in cs.CV and cs.LG

Abstract: Visual question answering (VQA) models are designed to demonstrate visual-textual reasoning capabilities. However, their real-world applicability is hindered by a lack of comprehensive benchmark datasets. Existing domain generalization datasets for VQA exhibit a unilateral focus on textual shifts while VQA being a multi-modal task contains shifts across both visual and textual domains. We propose VQA-GEN, the first ever multi-modal benchmark dataset for distribution shift generated through a shift induced pipeline. Experiments demonstrate VQA-GEN dataset exposes the vulnerability of existing methods to joint multi-modal distribution shifts. validating that comprehensive multi-modal shifts are critical for robust VQA generalization. Models trained on VQA-GEN exhibit improved cross-domain and in-domain performance, confirming the value of VQA-GEN. Further, we analyze the importance of each shift technique of our pipeline contributing to the generalization of the model.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.