Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Last-Iterate Convergence Properties of Regret-Matching Algorithms in Games (2311.00676v2)

Published 1 Nov 2023 in cs.GT and cs.LG

Abstract: We study last-iterate convergence properties of algorithms for solving two-player zero-sum games based on Regret Matching$+$ (RM$+$). Despite their widespread use for solving real games, virtually nothing is known about their last-iterate convergence. A major obstacle to analyzing RM-type dynamics is that their regret operators lack Lipschitzness and (pseudo)monotonicity. We start by showing numerically that several variants used in practice, such as RM$+$, predictive RM$+$ and alternating RM$+$, all lack last-iterate convergence guarantees even on a simple $3\times 3$ matrix game. We then prove that recent variants of these algorithms based on a smoothing technique, extragradient RM${+}$ and smooth Predictive RM$+$, enjoy asymptotic last-iterate convergence (without a rate), $1/\sqrt{t}$ best-iterate convergence, and when combined with restarting, linear-rate last-iterate convergence. Our analysis builds on a new characterization of the geometric structure of the limit points of our algorithms, marking a significant departure from most of the literature on last-iterate convergence. We believe that our analysis may be of independent interest and offers a fresh perspective for studying last-iterate convergence in algorithms based on non-monotone operators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.