Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Networks for Automatic Speaker Recognition Do Not Learn Supra-Segmental Temporal Features (2311.00489v2)

Published 1 Nov 2023 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: While deep neural networks have shown impressive results in automatic speaker recognition and related tasks, it is dissatisfactory how little is understood about what exactly is responsible for these results. Part of the success has been attributed in prior work to their capability to model supra-segmental temporal information (SST), i.e., learn rhythmic-prosodic characteristics of speech in addition to spectral features. In this paper, we (i) present and apply a novel test to quantify to what extent the performance of state-of-the-art neural networks for speaker recognition can be explained by modeling SST; and (ii) present several means to force respective nets to focus more on SST and evaluate their merits. We find that a variety of CNN- and RNN-based neural network architectures for speaker recognition do not model SST to any sufficient degree, even when forced. The results provide a highly relevant basis for impactful future research into better exploitation of the full speech signal and give insights into the inner workings of such networks, enhancing explainability of deep learning for speech technologies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.