Papers
Topics
Authors
Recent
2000 character limit reached

Generalization Bounds for Label Noise Stochastic Gradient Descent (2311.00274v1)

Published 1 Nov 2023 in stat.ML, cs.LG, and math.OC

Abstract: We develop generalization error bounds for stochastic gradient descent (SGD) with label noise in non-convex settings under uniform dissipativity and smoothness conditions. Under a suitable choice of semimetric, we establish a contraction in Wasserstein distance of the label noise stochastic gradient flow that depends polynomially on the parameter dimension $d$. Using the framework of algorithmic stability, we derive time-independent generalisation error bounds for the discretized algorithm with a constant learning rate. The error bound we achieve scales polynomially with $d$ and with the rate of $n{-2/3}$, where $n$ is the sample size. This rate is better than the best-known rate of $n{-1/2}$ established for stochastic gradient Langevin dynamics (SGLD) -- which employs parameter-independent Gaussian noise -- under similar conditions. Our analysis offers quantitative insights into the effect of label noise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.